Reaction-Mediator-Based Chlorination for the Recycling of Titanium Metal Scrap Utilizing Chloride Waste

نویسندگان

  • Yu-ki Taninouchi
  • Yuki Hamanaka
  • Toru H. Okabe
چکیده

In this study, a novel chlorination technique for metallic titanium (Ti) was devised in order to establish a recycling process that uses both Ti metal scrap and iron chloride (FeClx) waste, and its feasibility was demonstrated. Direct reaction between Ti and FeClx has drawbacks such as slow kinetics of Ti chlorination and high volatilization of FeClx. To overcome these, the authors proposed a chlorination technique utilizing a reaction mediator in molten salt. Based on thermodynamic analyses of lanthanoid chlorides, some fundamental experiments were carried out with samarium trichloride (SmCl3) as a reaction mediator. It was experimentally demonstrated that SmCl3 in molten magnesium chloride (MgCl2) can smoothly chlorinate Ti metal into gaseous titanium tetrachloride (TiCl4), and the by-product SmCl2 in the molten salt can be regenerated into SmCl3 by FeCl2. Thus, SmCl3 in a molten salt works efficiently as a reaction mediator, and the newly proposed chlorination technique has the potential to make the Ti recycling process more efficient and environmentally friendly. [doi:10.2320/matertrans.M-M2014838]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Thermodynamic Analysis for the Refining Ability of Salt Flux for Aluminum Recycling

The removability of impurities during the aluminum remelting process by oxidation was previously investigated by our research group. In the present work, alternative impurity removal with chlorination has been evaluated by thermodynamic analysis. For 43 different elements, equilibrium distribution ratios among metal, chloride flux and oxide slag phases in the aluminum remelting process were cal...

متن کامل

Production of titanium tetrachloride (TiCl4) from titanium ores: A review

Titanium (Ti) is the ninth most abundant element on earth. The titanium mineral ores are widely distributed in different parts of the world. The two main ores of titanium include rutile (TiO2) and ilmenite (FeO.TiO2). It is aimed to provide the readers with an insight to the main processes currently employed to extract and recover titanium tetrachloride (TiCl4) from different titanium ores. Due...

متن کامل

Scrap prices, waste and recycling policy

This study examines the effect of waste and recycling policy on scrap prices and the importance of scrap price feedbacks as a determinate of the costs of waste and recycling policy. The effects of a deposit/refund, advance disposal fee, and recycling subsidies on scrap prices are derived, and the direct and indirect channels of waste reduction are decomposed for the three instruments. Scrap pri...

متن کامل

Recovery of scrap iron metal value using biogenerated ferric iron.

The utility of employing biogenerated ferric iron as an oxidant for the recycling of scrap metal has been demonstrated using continuously growing cells of the extremophilic organism Acidithiobacillus ferrooxidans. A ferric iron rich (70 mol%) lixiviant resulting from bioreactor based growth of A. ferrooxidans readily solubilized target scrap metal with the resultant generation of a leachate con...

متن کامل

Aluminium salt slag characterization and utilization--a review.

Aluminium salt slag (also known as aluminium salt cake), which is produced by the secondary aluminium industry, is formed during aluminium scrap/dross melting and contains 15-30% aluminium oxide, 30-55% sodium chloride, 15-30% potassium chloride, 5-7% metallic aluminium and impurities (carbides, nitrides, sulphides and phosphides). Depending on the raw mix the amount of salt slag produced per t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014